
Chapter 1

[23]

Physical Separation
In a tier-based architecture, we separate code physically into different assemblies (or
a set of assemblies). For example, we may have a single assembly for the web project,
and another one for the class project having business code. If we want to deploy our
application across multiple servers, spanning different geographical locations, then
we need to use an n-tier architecture (which we will study in the coming chapters of
this book).

Logical Separation
Separating into layers mean that we logically separate the code, but the entire
application will be a part of a single physical assembly (or a set of assemblies
depending on the compilation model). We may put the code files into separate
folders, each having its own namespace for easier code management and readability,
but we won't have a separate assembly for each different namespace or part of the
code. Also, unlike physical separation, it will not be possible to deploy parts of the
application in a distributed manner.

So a "tier" is a unit of deployment, while a "layer" is a logical separation of
responsibility within the code. A layer becomes a tier if it can be physically
separated from the layers consuming it. Alternatively, a tier is a layer which
could be physically separated from the layers consuming it.

If we are using the Visual Studio 2005 Website model, then we may
have a set of assemblies for each page/folder, whereas if we use a Web
Application Project (WAP) model (similar to the one used in VS 2003) we
will have only a single assembly for the entire project.

Let's say we have a simple online guestbook system, which is a web-based
application developed in ASP.NET. Here is a simple flowchart in a very basic form:

User visits the online guestbook and
clicks "shows all comments" button

System queries the Access DB and shows
a list of comments to the user

The user logs on to the website and visits the online guestbook, and clicks on the
show all comments button. As a result, the system will show a list of comments to
the user. For the same, the system sends a query to the Access DB, which in turn
replies with a list of all the comments.

Introduction to Architecture and Design

[24]

Now, one way to program this system is to create a simple web form with button,
with the code to get the comments from the database placed inside the ASPX form
(without using any code behind classes). The solution will compile into a single DLL.
This inline coding approach will be discussed in the next chapter. Another method is
to use code behind classes segregating the ASPX code and the C#/VB.NET code. We
can introduce further loose coupling by separating the business logic and data access
code into separate class library projects.

For a Windows-based project, also known as a thick-client, an n-tier project
would have:

Windows forms (or Windows Presentation Foundations, WPF) as the
Presentation layer
C# or VB.NET code handling the business logic as the Business Layer (BL)
Data access code as the Data Access Layer (DAL)
The physical database as the Data Layer (DL)

Data access layer (DAL) is a set of classes used to encapsulate data access methods
like CRUD (Create Read Update and Delete) operations as well as any other methods
accessing data from a data store (known as Data Layer). DAL's primary job is to
communicate with the Data layer, which can be any RDBMS, set of XML files, text
files, and so on. The DAL layer should act as a 'dumb layer' which is used directly
by the BLL or any other service layer. The DAL layer should not contain any specific
logic in its classes, and it should be used like a "utility" or "helper" class to fetch and
store data to and from a data store.

Business logic layer (or the BLL) contains the business logic and set of operational
rules particular to the application and talks to the data access layer (DAL) to:

fetch data on which it has to apply rules
save updated data after applying rules to it
perform operations and validate data

BLL usually presents the data to the higher Layers (like a GUI layer) after performing
business rules on it. This layer may also include error handling, logging, and
exception handling strategies, besides encapsulating all the business rules of
the project.

UI layer contains the graphical display components and files like ASPX, ASCX,
MasterPages, stylesheets and so on. The UI layer usually is the Website or Web
Project in the Visual Studio solution for ASP.NET projects.

•

•

•

•

•

•

•

